A Lab Including a Synthesis of Aspirin and Oil of Wintergreen: [Essay Example], 1032 words GradesFixer

Haven't found the right essay?

Get an expert to write your essay!


Professional writers and researchers


Sources and citation are provided


3 hour delivery

This essay has been submitted by a student. This is not an example of the work written by professional essay writers.

A Lab Including a Synthesis of Aspirin and Oil of Wintergreen

  • Category: Environment
  • Subcategory: Nature
  • Topic: Winter
  • Pages: 2
  • Words: 1032
  • Published: 14 September 2018
  • Downloads: 26
Download Print

Pssst… we can write an original essay just for you.

Any subject. Any type of essay.

We’ll even meet a 3-hour deadline.

Get your price

121 writers online

Download PDF

Experiment 19: Synthesis of Aspirin and Oil of Wintergreen Discussion

The main purpose of this lab is to allow students to have the opportunity to observe the synthesis of various organic compounds, namely aspirin and the oil of wintergreen. This is done through utilization of the processes of esterification between an alcohol and an acid. After obtaining the synthesized products, purification techniques were used in order to create pure aspirin. The concepts of recrystallization, standardization of titrants, melting point tests, and back titration are all utilized throughout this lab in order to determine and obtain data associated with the purity and crudeness of both aspirin as well as oil of wintergreen.

Aspirin was formed by mixing salicylic acid with acetic anhydride in the following reaction:

C7H6O3 + C4H6O3 à C9H8O4 + C2H4O2

Utilizing 2.545 grams of salicylic acid and mixing it with 5mL of acetic anhydride, 6.051 grams of aspirin (acetylsalicylic acid) was obtained. The synthesis of this reaction obtained a percent yield of 98.19%. The theoretical yield for aspirin synthesis is 6.15grams and the actual yield was 6.051 grams. In order to test the purity of the product, a ferric chloride (FeCl3) solution is added. This ferric chloride solution tests for the presence of phenols, which is composed of families with an OH group, and if that phenol group is present, a magenta color is observed. Since aspirin doesn’t have a hydroxyl group, no color will form because no salicylic acid is present. Therefore, when a magenta color is observed it is primarily due to the impurities of salicylic acid. In order to further purify the product, a method referred to as recrystallization is utilized. The percent yield for recrystallized aspirin recovered is 13.75%. This yield is significantly lower than part one primarily because the process of recrystallization is attempting to remove the unreacted salicylic acid impurity from the product, thus we obtained a lower amount of yield. Additionally, if then aspirin wasn’t completely dry before weighing it, then the water will add to the mass of the crude product and make the % yield higher than if a lower yield should have been expected. Another source of error could be associated with how the lack of purification of our recrystallized product was most likely due to leaving our solution in the ice bath for a long time, until most of the solution was recrystallized. Because of this, some of the salicylic acid probably was able to recrystallize along with the aspirin product, no longer separating the two.

The melting range point observed for the crude aspirin is 22 degrees Celsius, while as the melting point observed for the pure aspirin is 14 degrees Celsius. The pure aspirin’s melting point is 125 degrees Celsius and has a 7.4 % error when it is compared to the known melting point of 135 degrees Celsius. The crude aspirin’s melting point is 102 degrees Celsius and has a 24.44% error when it is compared to the known melting point of 135 degrees Celsius. The difference between the melting point ranges is primarily associated with the intuition that if a sample is not completely pure, the melting point is lower and the temperature range associated with the melting point is larger. Therefore this confirms that the pure sample had a lot less impurities than the crude sample simply because the pure sample was close to the known melting point, and the crude sample was a lot farther from the known melting point meaning it had a lot of impurities.

In part 6, KHP is titrated with a solution of NaOH to determine the exact concentration of the NaOH. The average concentration observed for the standardized NaOH is 0.096755 M and the average deviation is 0.004626, therefore further demonstrating that the 3 samples differed by less than the required one percent. NaOH solution is standardized in order to determine its exact concentration. The standardized NaOH is effectively used to determine later on, the quantity of aspirin in the sample. Specifically, the standardized molarity of the NaOH(average molarity) was used to come up with mmoles of NaOH titrated and to help come up with the mmoles of NaOH in hydrolysis.

In part five, by mixing salicylic acid and methanol, we produced methyl salicylate, or Oil of Wintergreen, and water through the following reaction:

C7H6O3 + CH3OH à C8H8O3 + H2O

Through the addition of 1.003 grams of salicylic acid and 5mL of methanol and 3 drops of concentrated sulfuric acid. The resulting solution after being heated and then cooled still contains unreacted salicylic acid in the solution. We added a drop of 1% ferric chloride to the solution and it turned purple/magenta. This occurred because the hydroxyl group of the salicylic acid attaches to the aromatic ring in the ferric chloride which produces the colored complex (purple/magenta color). This showed us that there was still unreacted salicylic acid in the solution.

In part 7, we analyzed the purity of the aspirin by doing a back titration of the aspirin This is used to determine the amount of acetylsalicylic acid in the sample. To do this we used 2 samples of crude aspirin and 2 samples of pure aspirin. Their mass was respectively, crude: 0.475g, 0.551g and pure: 0.512g, 0.466g. After the back titration of the 4 samples, we were able to calculate percent aspirin in the 4 samples. The average mass of the aspirin was 0.219g. The average yield of aspirin in the crude sample is 0.0765 g, while as in the pure sample the average yield of aspirin is 0.36185g. The percent yield for aspirin in the first crude sample is 3.74% and in the second crude sample it is 24.52%. The percent yield for aspirin in the first pure sample is 61.58% and for the second pure sample it is 87.74%. Thus proving that our pure samples were had a lot less impurities than the crude samples. A source of error could be associated with how the stopper was not continuously placed down all the way in the Erlenmeyer flask containing the 0.1M NaOH. This could result in imprecise data primarily due to how NaOH has the ability to slowly react with CO2 gas in the air in order to eventually produce carbonic acid, H2CO3.

Remember: This is just a sample from a fellow student.

Your time is important. Let us write you an essay from scratch

100% plagiarism free

Sources and citations are provided

Find Free Essays

We provide you with original essay samples, perfect formatting and styling

Cite this Essay

To export a reference to this article please select a referencing style below:

GradesFixer. (2018). A Lab Including a Synthesis of Aspirin and Oil of Wintergreen. Retrived from https://gradesfixer.com/free-essay-examples/a-lab-including-a-synthesis-of-aspirin-and-oil-of-wintergreen/
GradesFixer. "A Lab Including a Synthesis of Aspirin and Oil of Wintergreen." GradesFixer, 14 Sep. 2018, https://gradesfixer.com/free-essay-examples/a-lab-including-a-synthesis-of-aspirin-and-oil-of-wintergreen/
GradesFixer, 2018. A Lab Including a Synthesis of Aspirin and Oil of Wintergreen. [online] Available at: <https://gradesfixer.com/free-essay-examples/a-lab-including-a-synthesis-of-aspirin-and-oil-of-wintergreen/> [Accessed 24 September 2020].
GradesFixer. A Lab Including a Synthesis of Aspirin and Oil of Wintergreen [Internet]. GradesFixer; 2018 [cited 2018 September 14]. Available from: https://gradesfixer.com/free-essay-examples/a-lab-including-a-synthesis-of-aspirin-and-oil-of-wintergreen/
copy to clipboard

Sorry, copying is not allowed on our website. If you’d like this or any other sample, we’ll happily email it to you.

    By clicking “Send”, you agree to our Terms of service and Privacy statement. We will occasionally send you account related emails.


    Attention! this essay is not unique. You can get 100% plagiarism FREE essay in 30sec

    Recieve 100% plagiarism-Free paper just for 4.99$ on email
    get unique paper
    *Public papers are open and may contain not unique content
    download public sample

    Sorry, we cannot unicalize this essay. You can order Unique paper and our professionals Rewrite it for you



    Your essay sample has been sent.

    Want us to write one just for you? We can custom edit this essay into an original, 100% plagiarism free essay.

    thanks-icon Order now

    Hi there!

    Are you interested in getting a customized paper?

    Check it out!
    Having trouble finding the perfect essay? We’ve got you covered. Hire a writer

    GradesFixer.com uses cookies. By continuing we’ll assume you board with our cookie policy.