Alternations of chromosome number or structural changes of chromosomes: [Essay Example], 640 words GradesFixer
exit-popup-close

Haven't found the right essay?

Get an expert to write your essay!

exit-popup-print

Professional writers and researchers

exit-popup-quotes

Sources and citation are provided

exit-popup-clock

3 hour delivery

exit-popup-persone
close
This essay has been submitted by a student. This is not an example of the work written by professional essay writers.

Alternations of Chromosome Number Or Structural Changes of Chromosomes

Download Print

Pssst… we can write an original essay just for you.

Any subject. Any type of essay.

We’ll even meet a 3-hour deadline.

Get your price

121 writers online

blank-ico
Download PDF

Alternations of chromosome number or structural changes of chromosomes appear quite often in hybrids. Those changes can result in genetic diversity or can even drive to new species formation. Chromosome aberrations can be triggered as a result of physical factors (such as: radiation, temperature), chemical factors (colchicine) or genetic factors (abnormal expression of genes, responsible for pairing of homologs; gametocidal genes).

Such chromosome deviations are widely used for the transfer of alien germplasm into cultivated species. Hybridization is a starting point, which leads to the introgression of desirable loci. Polyploidization is a specific kind of hybridization, which results in the inheritance of an additional, complete set (or sets) of chromosomes. This phenomena can appear naturally in the wake of abnormal cell division (failures during meiotic or mitotic cell division) or by fusion of unreduced gametes. Both mechanisms lead to multiplication of chromosome set. There are two kinds of polyploidy organisms. Those with multiplied own sets of chromosomes are called autopolyploids (e.g. potato). By contrast polyploids originated from the cross-hybridization of two different species are known as allopolyploids (e.g. canola, wheat, triticale).

Both autopolyploids and allopolyploids are common among domesticated plant species. Generating synthetic amphidiploids containing the genomes of different cereal species provides new insights into polyploid evolution, which can help to understand the mechanism and evolutionary aspects of polyploidy. It can also facilitate the transmission of valuable genetic properties from wild species to cultivated plants (Apolinarska et al. 2010; Kwiatek et al. 2012; Kwiatek et al. 2013).

In general, F1 hybrids obtained by the intergeneric cross-hybridization are sterile, mostly because of the lack of functional gametes. This is connected with different ploidy level of the parental components and the expression of Ph1 gene located on chromosome 5B in triticale, responsible for homologues chromosome pairing during meiosis (Riley and Chapman 1958; Lukaszewski and Kopecký 2010).

If parents are of distant genome affinity and differing chromosome pair number, the F1 offspring will be unable to produce chromosomally identical and balanced gametes. However, especially in the evolution of the majority of polyploid plants, those obstacles were overcame with the pivotal-differential origin pattern. Evolution of wheat (Triticum aestivum L.; 2n=6x=42 chromosomes) is an excellent example of such pattern of allopolyploidization, through hybridization among species from the plant genera Aegilops and Triticum. There are two explanations of speciation in this group. First, monophyletic evolution hypothesis is that a single wild progenitor was an ancestor of particular species or genomes. Second theory, called polyphyletic evolution, says that the wild progenitor could have been introduced into several spontaneous crosses with other species and faced with multiple events of recombination (Zohary 1999). According to the polyphyletic hypothesis, the rate of parental genome modification in the case of evolution of polyploid species is different. In this instance, one genome is closely related or even identical to the parental one (pivotal genome), while the second – differential genome (or genomes) is much more genetically diversified (Feldman and Levy 2012).

Polyploid wheats include two evolutionary lineages: Emmer wheats (AuAuBB) and Timopheevi wheats (AuAuGG) (Spoor 2001) where Au-genome is the pivotal one. Both of them are supposed to have originated from two independent crosses involving progenitors of Triticum urartu Thum. ex Gandil (Au-genome, paternal component) and Aegilops speltoides Tausch (S-genome, maternal component).

On the one side, it is hypothesized that B-genome is monophyletic in origin and was derived directly from Ae. speltoides. On the other side, B-genome is of polyphyletic origin, and it is assumed that it has derived from more than one diploid species. Moreover, two pivotal genomes, D and U, were identified in Aegilops genus, where all polyploid species were subdivided into two clusters. The D-genome cluster includes a diploid Ae. tauschii and six polyploid species of Vertebrata and Cylindropyron sections, while the U-genome cluster included a diploid Ae. umbellulata and eight polyploid species of Pleionathera section (Kihara 1954; Feldman 1965; Kilian et al. 2011).

Remember: This is just a sample from a fellow student.

Your time is important. Let us write you an essay from scratch

100% plagiarism free

Sources and citations are provided

Find Free Essays

We provide you with original essay samples, perfect formatting and styling

Cite this Essay

To export a reference to this article please select a referencing style below:

Alternations of chromosome number or structural changes of chromosomes. (2019, January 28). GradesFixer. Retrieved October 20, 2020, from https://gradesfixer.com/free-essay-examples/alternations-of-chromosome-number-or-structural-changes-of-chromosomes/
“Alternations of chromosome number or structural changes of chromosomes.” GradesFixer, 28 Jan. 2019, gradesfixer.com/free-essay-examples/alternations-of-chromosome-number-or-structural-changes-of-chromosomes/
Alternations of chromosome number or structural changes of chromosomes. [online]. Available at: <https://gradesfixer.com/free-essay-examples/alternations-of-chromosome-number-or-structural-changes-of-chromosomes/> [Accessed 20 Oct. 2020].
Alternations of chromosome number or structural changes of chromosomes [Internet]. GradesFixer. 2019 Jan 28 [cited 2020 Oct 20]. Available from: https://gradesfixer.com/free-essay-examples/alternations-of-chromosome-number-or-structural-changes-of-chromosomes/
copy to clipboard
close

Sorry, copying is not allowed on our website. If you’d like this or any other sample, we’ll happily email it to you.

    By clicking “Send”, you agree to our Terms of service and Privacy statement. We will occasionally send you account related emails.

    close

    Attention! this essay is not unique. You can get 100% plagiarism FREE essay in 30sec

    Recieve 100% plagiarism-Free paper just for 4.99$ on email
    get unique paper
    *Public papers are open and may contain not unique content
    download public sample
    close

    Sorry, we cannot unicalize this essay. You can order Unique paper and our professionals Rewrite it for you

    close

    Thanks!

    Your essay sample has been sent.

    Want us to write one just for you? We can custom edit this essay into an original, 100% plagiarism free essay.

    thanks-icon Order now
    boy

    Hi there!

    Are you interested in getting a customized paper?

    Check it out!
    Having trouble finding the perfect essay? We’ve got you covered. Hire a writer

    GradesFixer.com uses cookies. By continuing we’ll assume you board with our cookie policy.