close
test_template

Human Embryonic Stem Cells (hescs)

download print

About this sample

About this sample

close

Words: 908 |

Pages: 2|

5 min read

Published: Jan 15, 2019

Words: 908|Pages: 2|5 min read

Published: Jan 15, 2019

Embryonic stem cells, as their name suggests, are derived from embryos. Most embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitro—in an in vitro fertilization clinic—and then donated for research purposes with informed consent of the donors. They are not derived from eggs fertilized in a woman’s body.

'Why Violent Video Games Shouldn't Be Banned'?

Growing cells in the laboratory is known as cell culture. Human embryonic stem cells (hESCs) are generated by transferring cells from a preimplantation-stage embryo into a plastic laboratory culture dish that contains a nutrient broth known as culture medium. The cells divide and spread over the surface of the dish. In the original protocol, the inner surface of the culture dish was coated with mouse embryonic skin cells specially treated so they will not divide. This coating layer of cells is called a feeder layer. The mouse cells in the bottom of the culture dish provide the cells a sticky surface to which they can attach. Also, the feeder cells release nutrients into the culture medium. Researchers have now devised ways to grow embryonic stem cells without mouse feeder cells. This is a significant scientific advance because of the risk that viruses or other macromolecules in the mouse cells may be transmitted to the human cells.

The process of generating an embryonic stem cell line is somewhat inefficient, so lines are not produced each time cells from the preimplantation-stage embryo are placed into a culture dish. However, if the plated cells survive, divide and multiply enough to crowd the dish, they are removed gently and plated into several fresh culture dishes. The process of re-plating or subculturing the cells is repeated many times and for many months. Each cycle of subculturing the cells is referred to as a passage. Once the cell line is established, the original cells yield millions of embryonic stem cells. Embryonic stem cells that have proliferated in cell culture for six or more months without differentiating, are pluripotent, and appear genetically normal are referred to as an embryonic stem cell line. At any stage in the process, batches of cells can be frozen and shipped to other laboratories for further culture and experimentation.

At various points during the process of generating embryonic stem cell lines, scientists test the cells to see whether they exhibit the fundamental properties that make them embryonic stem cells. This process is called characterization. Scientists who study human embryonic stem cells have not yet agreed on a standard battery of tests that measure the cells’ fundamental properties. However, laboratories that grow human embryonic stem cell lines use several kinds of tests, including: Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term growth and self-renewal. Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated.

Using specific techniques to determine the presence of transcription factors that are typically produced by undifferentiated cells. Two of the most important transcription factors are Nanog and Oct4. Transcription factors help turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development. In this case, both Oct 4 and Nanog are associated with maintaining the stem cells in an undifferentiated state, capable of self-renewal.

Using specific techniques to determine the presence of particular cell surface markers that are typically produced by undifferentiated cells. Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. It does not detect genetic mutations in the cells. Determining whether the cells can be re-grown, or subcultured, after freezing, thawing, and re-plating. Testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form cells characteristic of the three germ layers; or 3) injecting the cells into a mouse with a suppressed immune system to test for the formation of a benign tumor called a teratoma. Since the mouse’s immune system is suppressed, the injected human stem cells are not rejected by the mouse immune system and scientists can observe growth and differentiation of the human stem cells. Teratomas typically contain a mixture of many differentiated or partly differentiated cell types—an indication that the embryonic stem cells are capable of differentiating into multiple cell types.

As long as the embryonic stem cells in culture are grown under appropriate conditions, they can remain undifferentiated (unspecialized). But if cells are allowed to clump together to form embryoid bodies, they begin to differentiate spontaneously. They can form muscle cells, nerve cells, and many other cell types. Although spontaneous differentiation is a good indication that a culture of embryonic stem cells is healthy, the process is uncontrolled and therefore an inefficient strategy to produce cultures of specific cell types.

Get a custom paper now from our expert writers.

So, to generate cultures of specific types of differentiated cells—heart muscle cells, blood cells, or nerve cells, for example—scientists try to control the differentiation of embryonic stem cells. They change the chemical composition of the culture medium, alter the surface of the culture dish, or modify the cells by inserting specific genes. Through years of experimentation, scientists have established some basic protocols or “recipes” for the directed differentiation of embryonic stem cells into some specific cell types (Figure 1). (For additional examples of directed differentiation of embryonic stem cells, refer to the 2006 NIH stem cell report.)

Image of Alex Wood
This essay was reviewed by
Alex Wood

Cite this Essay

Human embryonic stem cells (hESCs). (2019, January 15). GradesFixer. Retrieved March 29, 2024, from https://gradesfixer.com/free-essay-examples/human-embryonic-stem-cells-hescs/
“Human embryonic stem cells (hESCs).” GradesFixer, 15 Jan. 2019, gradesfixer.com/free-essay-examples/human-embryonic-stem-cells-hescs/
Human embryonic stem cells (hESCs). [online]. Available at: <https://gradesfixer.com/free-essay-examples/human-embryonic-stem-cells-hescs/> [Accessed 29 Mar. 2024].
Human embryonic stem cells (hESCs) [Internet]. GradesFixer. 2019 Jan 15 [cited 2024 Mar 29]. Available from: https://gradesfixer.com/free-essay-examples/human-embryonic-stem-cells-hescs/
copy
Keep in mind: This sample was shared by another student.
  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours
Write my essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

close

Where do you want us to send this sample?

    By clicking “Continue”, you agree to our terms of service and privacy policy.

    close

    Be careful. This essay is not unique

    This essay was donated by a student and is likely to have been used and submitted before

    Download this Sample

    Free samples may contain mistakes and not unique parts

    close

    Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

    close

    Thanks!

    Please check your inbox.

    We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

    clock-banner-side

    Get Your
    Personalized Essay in 3 Hours or Less!

    exit-popup-close
    We can help you get a better grade and deliver your task on time!
    • Instructions Followed To The Letter
    • Deadlines Met At Every Stage
    • Unique And Plagiarism Free
    Order your paper now