Preventive Measures To Be Taken For The Industrial And Inorganic Wastes: [Essay Example], 886 words GradesFixer
exit-popup-close

Haven't found the right essay?

Get an expert to write your essay!

exit-popup-print

Professional writers and researchers

exit-popup-quotes

Sources and citation are provided

exit-popup-clock

3 hour delivery

exit-popup-persone
close
This essay has been submitted by a student. This is not an example of the work written by professional essay writers.

Preventive Measures to Be Taken for the Industrial and Inorganic Wastes

Download Print

Pssst… we can write an original essay just for you.

Any subject. Any type of essay.

We’ll even meet a 3-hour deadline.

Get your price

121 writers online

blank-ico
Download PDF

Basically, Industrial waste consists of industrial wastewater. Our environment is being polluted every day. And industrial pollution is one of main reasons for it. Factories are dumping their waste anywhere they can and it is polluting our environment. Hence, we need to control and treat the industrial water. Industrial waste water treatment for inorganic compounds can be as simple as settling or filtration and as complex as multistage chemical precipitation or ion exchange process. Typical parameters requiring treatment in industrial waste water include suspended solids, dissolved metals, nitrates, ammonia, arsenic, and sulphate. The industrial waste water constitutes a large amount of inorganic matter and these inorganic wastes can be treated by many ways namely:

  • Physical Treatment
  • Biological treatment
  • Chemical Treatment.

Physical Treatment

Physical processes include clarification, filtration, and membrane technologies. Except for the most rigorous membrane process (reverse osmosis), physical processes will generally not remove dissolved contaminants. Clarification uses a combination of coagulation, and settling to remove suspended particles and typically involves sludge recycle. Filtration methods include bag filters, sand filters, and multimedia filters. Multimedia filters, which typically utilize anthracite coal, sand, and garnet, are probably the most common filters now in use. These filters are pressure vessels that use downflow operation to remove suspended contaminants and a periodic up flow backwash to transfer these contaminants to a waste stream. The most common membrane technologies are microfiltration, ultrafiltration, and reverse osmosis (RO). These are listed in the order of decreasing pore size, increasing removal efficiency, and increasing pressure requirements. The primary disadvantage of RO is a high-volume waste stream which often limits its applicability.

Biological Treatment

Biological treatment processes include attached growth, suspended growth, and membrane bioreactors. Attached growth processes are most common, but membrane bioreactors are a growing application. Biological treatment can be used to remove ammonia, nitrate, selenium, sulphate and dissolved metals. In an attached growth system, bacteria are attached to the media surface. Media can range from plastic to activated carbon to rock, with media diameters ranging from microns to centimetres. The attached bacteria (a Biofilm) provide a very robust process in which it is very resilient to changes in flow, pH, and contaminant concentration. Attached growth systems are the best choice for treating high or variable concentrations.

Suspended growth systems are commonly used for municipal wastewater treatment but can also be used for industrial waste water. Activated sludge is an example of suspended growth biological treatment. Suspended growth is often used for removal of nutrients (Nitrogen and Phosphorus). When properly designed, these systems can be used for both nitrification (Ammonia removal) and denitrification (Nitrate removal). Nitrification is an aerobic process, while denitrification is anaerobic process. Suspended growth is best used for relatively low contaminant concentrations. In a suspended growth system such as activated sludge processes (also aerated lagoons and aerobic digesters), waste water surrounds the free-floating micro-organisms, gathering into biological flocs. The settled flocs containing bacteria can be recycled for further treatment.

Suspended growth systems typically operate poorly when encountering high variable waste streams. Suspended growth systems also require more energy, more equipment maintenance, and are more complex to operate because they involve more equipment than attached growth systems. However, attached growth systems typically require more land, may have odour issues associated with media clogging, and may be unable to treat high wastewater flows. Consequently, urban wastewater facilities often opt for suspended growth processes, while attached growth processes are common in small to medium size operations.

Chemical Treatment

Chemical treatment processes include hydroxide precipitation, sulphide precipitation, oxidation-reduction, ion exchange methods, and natural zeolites. Hydroxide precipitation typically uses lime to increase the pH. Hydrated lime or pebble lime (Sodium hydroxide), soda ash (Sodium carbonate), or magnesium hydroxide. For ease of addition and to avoid mix up of chemical solutions, liquid caustic soda or lime slurry is sometimes purchased. The pH target for hydroxide precipitation depends upon the contaminants of concern. After precipitation and subsequent clarification or filtration, acid is often added to meet discharge requirements for pH. Coprecipitation, a process in which dissolved contaminants are pulled out of solution along with precipitation of high concentrations of contaminants such as iron, manganese, and sulphate, can also help to meet discharge limits.

Oxidation reduction processes are used to transform contaminants into less soluble or more easily removed forms. For arsenic removal, oxidising agents like chlorine/sodium hypochlorite, hydrogen peroxide, ozone, or permanganate are commonly added. Conversely, reducing agents such as sodium bisulphate or metabisulphite may be added to remove contaminants such as chromium and selenium. Oxidation and reduction are typically rapid reactions but since they require chemical addition, it will increase the total dissolved solids in treated water.

Sulphide precipitation, which can achieve lower levels than hydroxide precipitation, is typically used as a polishing step to meet low metals concentrations. Sodium sulphide or Sodium hydrogen Sulphide (NaHS) is typically used. This process requires only small quantities of reagent and a short retention time. The process is typically done at neutral to high pH to avoid generating dangerous hydrogen sulphide gas.

Specific ion exchange resins from several manufacturers are available to remove dissolved metals, arsenic, and nitrate. In this process, sodium or chloride ions are exchanged for the target contaminants. Resin is relatively expensive but has a long life and can be chemically regenerated. The waste stream from ion exchange is typically much less than that generated by reverse osmosis (RO).

Remember: This is just a sample from a fellow student.

Your time is important. Let us write you an essay from scratch

100% plagiarism free

Sources and citations are provided

Find Free Essays

We provide you with original essay samples, perfect formatting and styling

Cite this Essay

To export a reference to this article please select a referencing style below:

Preventive Measures To Be Taken For The Industrial And Inorganic Wastes. (2020, April 02). GradesFixer. Retrieved November 27, 2020, from https://gradesfixer.com/free-essay-examples/preventive-measures-to-be-taken-for-the-industrial-and-inorganic-wastes/
“Preventive Measures To Be Taken For The Industrial And Inorganic Wastes.” GradesFixer, 02 Apr. 2020, gradesfixer.com/free-essay-examples/preventive-measures-to-be-taken-for-the-industrial-and-inorganic-wastes/
Preventive Measures To Be Taken For The Industrial And Inorganic Wastes. [online]. Available at: <https://gradesfixer.com/free-essay-examples/preventive-measures-to-be-taken-for-the-industrial-and-inorganic-wastes/> [Accessed 27 Nov. 2020].
Preventive Measures To Be Taken For The Industrial And Inorganic Wastes [Internet]. GradesFixer. 2020 Apr 02 [cited 2020 Nov 27]. Available from: https://gradesfixer.com/free-essay-examples/preventive-measures-to-be-taken-for-the-industrial-and-inorganic-wastes/
copy to clipboard
close

Sorry, copying is not allowed on our website. If you’d like this or any other sample, we’ll happily email it to you.

    By clicking “Send”, you agree to our Terms of service and Privacy statement. We will occasionally send you account related emails.

    close

    Attention! this essay is not unique. You can get 100% plagiarism FREE essay in 30sec

    Recieve 100% plagiarism-Free paper just for 4.99$ on email
    get unique paper
    *Public papers are open and may contain not unique content
    download public sample
    close

    Sorry, we cannot unicalize this essay. You can order Unique paper and our professionals Rewrite it for you

    close

    Thanks!

    Your essay sample has been sent.

    Want us to write one just for you? We can custom edit this essay into an original, 100% plagiarism free essay.

    thanks-icon Order now
    boy

    Hi there!

    Are you interested in getting a customized paper?

    Check it out!
    Having trouble finding the perfect essay? We’ve got you covered. Hire a writer

    GradesFixer.com uses cookies. By continuing we’ll assume you board with our cookie policy.