By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related email
No need to pay just yet!
About this sample
About this sample
Words: 1701 |
Pages: 4|
9 min read
Published: Jul 30, 2019
Words: 1701|Pages: 4|9 min read
Published: Jul 30, 2019
Sir Isaac Newton’s intellect and contributions eclipsed the scientific contributions of an entire generation of his peers. While there are a number of great minds recorded in human history, many are from periods of questionable record keeping. We know that many ideas attributed to the great ancient scientists and philosophers have been argued to be the work of other, lesser known contributors. While there may have been a greater individual mind in history, the question of where fact ends and historic liberty begins calls their entire legacy into question. Isaac Newton doesn’t suffer from this historic ambiguity. Historians and scholars from his era rigorously recorded and cross checked every detail of his work. He possessed so great an intellect that in many ways he shifted humanities drive away from the Aristotelian research focus and realigned it in pursuit of his own research. He simultaneously disproved centuries old theories, provided new ideas which set science on an entirely new path, and unified multiple disparate concepts into a physical framework which would last hundreds of years.
Newton is primarily seen as a man who pioneered new theories. Equally important though was his ability to deconstruct other concepts and identify errors they presented. Two of most notable examples of this are his refutation of Aristotelian physics, and his significant modifications to Copernican heliocentrism. While both theories offered valuable insight, they suffered from overly presumptive leaps from demonstrated science to wishful thinking.
Aristotelian physics was a landmark theory in its own right. Aristotle is widely regarded as the greatest scientist of the classic Greek period and his concepts of what construction and mechanics of the physical world persisted for over 1500 years. The achievement of a comprehensive system which unified theories of the great minds of his period was tainted by bold assumptions and pseudo-science which is still embarrassingly common even in our era of understanding. Aristotle’s first factual deviation was his theory of what the universe was composed of. Aristotle taught that the area of the universe humans inhabited was the terrestrial sphere. This sphere consisted of 4 prime elements or spheres; earth, water, fire, and air. Newton argued in Principia II that he believed with appropriate microscopes we might see atomic corpuscles. While we had no institutional knowledge of atoms or the periodic table Newton understood that Aristotle’s terrestrial sphere was incorrect.
Aristotle also believed the cosmos consisted of celestial spheres. Aristotle also argued these celestial spheres were guided through the sky by “unmoved movers”, or ethereal objects which indirectly influence celestial spheres along their perfectly circular routes. Newton’s theory of gravity and calculations on planetary orbits removed the magic of unmoved and prime movers from the cosmos and accounted for movement without requiring mystic forces.
In the tradition of most scientific theories, Nicolaus Copernicus provided an elegant, comprehensive theory about the motion of the Cosmos which modified and combined the efforts of countless great thinkers before him. The Copernican heliocentric model placed the Sun and not the Earth near the center of the universe, refuting the widely accepted Ptolemaic model that the entirety of the universe rotated around a stationary Earth. However, while Copernicus argued against the central tenant of the Ptolemaic theory, he did incorporate some key explanations from the model which ultimately helped invalidate his theory.
Ptolemy, Copernicus, and many other scientists still adhered to the Aristotelian concept of unseen objects in the sky moving the celestial bodies. Ptolemy argued in favor of epicycles. Instead of mystic forces in the sky, epicycles were systems of circular belts which drove objects along their paths in perfect circles at constant speeds. This idea was so prevalent that over 1500 years later Copernicus incorporated the concept into his heliocentric model. Again, it took Newton’s measurements of elliptical orbits and theory of gravity to provide concrete evidence against epicycles and ultimately demonstrate the faulty assumptions of the prevailing heliocentric models.
While Newton was occasionally involved in upending overly presumptuous science, his greater contribution was through providing proof for his revolutionary theories. It requires significant intelligence to create an elegant theory, but it takes a unique genius to provide proof for that theory. We celebrate pre-Newtonian scientists for making the best with the information they had and filling in the gaps as they saw fit. Newton’s academic rigor changed the scientific landscape. It stopped being enough to propose a model that incorporated a mix of observation and speculation. Now to be considered a serious scientist you could only measure data and make conclusions based on that evidence. The age of superstition and mysticism was coming to an end.
One of Newton’s fundamental discoveries was his 3 laws of motion. The 3 laws were mathematic concepts which provided formulas describing acceleration, force and inertia. The first law deals with inertia, stating “Every object stays at rest or motion unless acted on by an external force.” His second law deals with force, which states “The force acting on a body is defined as the rate of change of its linear momentum, with time.” Lastly his third law is concerned with action and reaction, “Every action has an equal and opposite reaction.” Together, these 3 laws became the foundation for our understanding of modern physics.
Newton also sought answers to orbits of celestial bodies. The widely known story of Isaac Newton contemplating the nature of the universe under an apple tree and being struck on the head by a falling apple is likely apocryphal. His law of gravitation however is certain. The law elegantly described how bodies are attracted to each other without requiring prime movers or equants. Newton’s law of gravity states “Every particle of matter attracts every other particle with a force along the straight line joining them and is directly proportional to their masses, while inversely proportional to the square of the distance between them.” In essence, his law described the attraction between distinct bodies, while accounting for changes in acceleration due to mass and distance between them.
If the law of gravitation itself wasn’t enough, Newton provided mathematic proofs for Johannes Kepler’s 3 laws of planetary motion, which Kepler intuitively understood but couldn’t explain. Kepler’s laws described elliptical orbits of planets, which broke from a millennia old belief that planets ascribed to perfect circular orbits. It is a true testament to Newton’s genius that he was able to understand Kepler’s laws more fully than Kepler himself.
Newton wasn’t content to simply revolutionize astronomy. He was also consumed by a desire to further human understanding of what light was. Prior to Newton, science held that light was the absence of color, and that color was an intrinsic property of objects. More simply, things were red because they were red. Through the development of new lenses and the employment of prisms Newton began to scatter light. What he discovered is that a white light beam is in fact composed of an entire spectrum of light. White light wasn’t the absence of color; it was the presence of all color.
He also discovered that objects presented a specific color through selectively absorbing and reflecting colors along the visible spectrum. This understanding led to a theory that would take hundreds of years to offer demonstrable proof. By combining red light, which sits on one end of the visible spectrum, with violet which is on the other, Newton “created” magenta, which he dubbed a “non-natural color of light.” This led to his theory that the perception of color is largely subjective, and that humans may interpret the same color differently. His other forward thinking theory dealt with the nature of light itself. There was no single accepted theory on what light actually was. Newton proposed the concept of light consisting of tiny corpuscles, similar to blood cells. While Huygens proved the theory itself wrong, the concept of light as discrete packets was revisited by Einstein, with his photons being the current theory regarding the composition of light.
Newton’s most significant contribution lay in his groundbreaking 3 volume treatise Philosophiæ Naturalis Principia Mathematica. Shortened by his peers to simply The Principia, the volumes were accepted shortly after their distribution as one of the most significant scientific publications in history. In Principia Volume II Newton introduced geometric expressions which he would later pioneer with Gottfried Wilhelm Leibniz into a new field of mathematics known as Calculus. This was significant for a number of factors. Calculus was able to rapidly and accurately calculate rates of change in the movement of objects. Prior to the expressions, astronomers relied on the mathematic method of exhaustion, which relied on slowly narrowing in on a correct answer through exhaustive trial and error. Calculus also began to demonstrate commonality between previously separate fields of math such as linear algebra and analytic geometry.
More important than calculus on its own, the Principia simultaneously invalidated previous theories while unifying numerous separate scientific concepts and laws to establish a physical framework that became known as classical mechanics. Newton presented a master course on hydromechanics, the movement of fluids. His work on was used to disprove Descartes widely debated Cartesian Model, which claimed heavenly bodies traveled through space along fluid vortices.
Newton provided the capstone effort of numerous great minds before him, taking portions of Copernicus’s solar model, Brahe’s remarkably precise celestial measurements, and Kepler’s laws of motion . The Principia became so influential among the scientific community that in addition to providing a comprehensive unified physical theory of the universe, it laid out a foundation for new fields of science and inspired scientists to pursue entirely new concepts.
Sir Isaac Newton was known to be such a remarkable intellectual during his lifetime that he occupied an astonishing number of social and governmental positions. He served as the 2nd Lucasian Professor of Mathematics, an elected member of the English Parliament, and was knighted by the Queen. In his later years he was selected as the President of the Royal Society, and was chosen to serve as the Warden and later, Master of the English Royal Mint, where he designed revolutionary anti-counterfeit techniques on English currency. His research, theories and publications dwarfed the contributions of an entire generation of his peers. Sir Isaac Newton’s genius and importance in his era and the centuries after cannot be overstated. He was one of the greatest minds to ever live.
Browse our vast selection of original essay samples, each expertly formatted and styled