General Description of an Aircraft Electrical System

download print

About this sample

About this sample


Words: 624 |

Page: 1|

4 min read

Published: Jan 15, 2019

Words: 624|Page: 1|4 min read

Published: Jan 15, 2019

Table of contents

  1. General Description
  2. Basic Aircraft Electrical Systems
  3. Advanced Aircraft Electrical Systems

An Aircraft Electrical System is a self contained network of components that generate, transmit, distribute, utilize and store electrical energy.

'Why Violent Video Games Shouldn't Be Banned'?

General Description

An electrical system is an integratal and essential component of all but the most simplistic of aircraft designs. The electical system capacity and complexity varies tremendously between a light, piston powered, single engine GA aircraft and a modern, multiengine commercial jet aircraft. However, the electrical system for aircraft at both ends of the complexity spectrum share many of the same basic components.

All aircraft electrical systems have components with the ability to generate electricity. Depending upon the aircraft, generators or alternators are used to produce electricity. These are usually engine driven but may also be powered by an APU, a hydraulic motor or a Ram Air Turbine (RAT). Generator output is normally 115-120V/400HZ AC, 28V DC or 14V DC. Power from the generator may be used without modification or it may be routed through transformers, rectifiers or inverters to change the voltage or type of current.

The generator output will normally be directed to one or more distribution Bus. Individual components are powered from the bus with circuit protection in the form of a Circuit Breaker or fuse incorporated into the wiring. The generator output is also used to charge the aircraft battery(s). Batteries are usually either of the lead-acid or NICAD types but lithium batteries are becoming more and more common. They are used for both aircraft startup and as an emergency source of power in the event of a generation or distribution system failure.

Basic Aircraft Electrical Systems

Some very simple single engine aircraft do not have an electrical system installed. The piston engine is equiped with a Magneto ignition system, which is self powering, and the fuel tank is situated so it will gravity feed the engine. The aircraft is started by means of a flywheel and crank arrangement or by “hand-proping” the engine. If an electric starter, lights, electric flight instruments, navigation aids or radios are desired, an electrical system becomes a necessity. In most cases, the system will be DC powered using a single distribution bus, a single battery and a single engine driven generator or alternator. Provisions, in the form of an on/off switch, will be incorporated to allow the battery to be isolated from the bus and for the generator/alternator to be isolated from the bus. An ammeter, loadmeter or warning light will also be incorporated to provide an indication of charging system failure. Electrical components will be wired to the bus-bar incorporating either circuit breakers or fuses for circuit protection. Provisions may be provided to allow an external power source such as an extra battery or a Ground Power Unit to be connected to assist with the engine start or to provide power whilst the engine is not running.

Get a custom paper now from our expert writers.

Advanced Aircraft Electrical Systems

More sophisticated electrical systems are usually multiple voltage systems using a combination of AC and DC buses to power various aircraft components. Primary power generation is normally AC with one or more Transformer Rectifier Unit (TRU) providing conversion to DC voltage to power the DC busses. Secondary AC generation from an APU is usually provided for use on the ground when engines are not running and for airborne use in the event of component failure. Tertiary generation in the form of a hydraulic motor or a RAT may also be incorporated into the system to provide redundancy in the event of multiple failures. Essential AC and DC components are wired to specific busses and special provisions are made to provide power to these busses under almost all failure situations. In the event that all AC power generation is lost, a static Inverter is included in the system so the Essential AC bus can be powered from the aircraft batteries.

Image of Dr. Oliver Johnson
This essay was reviewed by
Dr. Oliver Johnson

Cite this Essay

General Description of an Aircraft Electrical System. (2019, January 15). GradesFixer. Retrieved December 4, 2023, from
“General Description of an Aircraft Electrical System.” GradesFixer, 15 Jan. 2019,
General Description of an Aircraft Electrical System. [online]. Available at: <> [Accessed 4 Dec. 2023].
General Description of an Aircraft Electrical System [Internet]. GradesFixer. 2019 Jan 15 [cited 2023 Dec 4]. Available from:
Keep in mind: This sample was shared by another student.
  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours
Write my essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled


Where do you want us to send this sample?

    By clicking “Continue”, you agree to our terms of service and privacy policy.


    Be careful. This essay is not unique

    This essay was donated by a student and is likely to have been used and submitted before

    Download this Sample

    Free samples may contain mistakes and not unique parts


    Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.



    Please check your inbox.

    We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!


    Get Your
    Personalized Essay in 3 Hours or Less!

    We can help you get a better grade and deliver your task on time!
    • Instructions Followed To The Letter
    • Deadlines Met At Every Stage
    • Unique And Plagiarism Free
    Order your paper now