close
test_template

Overview of Neptune and Its Atmosphere

Human-Written
download print

About this sample

About this sample

close
Human-Written

Words: 808 |

Pages: 2|

5 min read

Published: Jan 29, 2019

Words: 808|Pages: 2|5 min read

Published: Jan 29, 2019

Of the many planets in our solar system of the Milky Way, Neptune is not the most widely discussed. Neptune is the eighth and farthest planet from the Sun in our Solar System. Neptune, like Uranus, is an ice giant, a subclass of giant planet, because they are smaller and have higher concentrations of volatiles than Jupiter and Saturn. In the search for extrasolar planets, Neptune has been used as a metonym: discovered bodies of similar mass are often referred to as "Neptunes", just as scientists refer to various extrasolar bodies as "Jupiters".

Like Jupiter and Saturn, Neptune's atmosphere is composed primarily of hydrogen and helium, along with traces of hydrocarbons and possibly nitrogen, but it contains a higher proportion of "ices" such as water, ammonia, and methane. However, its interior, like that of Uranus, is primarily composed of ices and rock, which is why Uranus and Neptune are normally considered "ice giants" to emphasise this distinction. Traces of methane in the outermost regions in part account for the planet's blue appearance. The mantle of the planet is equivalent to about 10 to 15 Earth masses and is rich in water, ammonia and methane. As is customary in planetary science, this mixture is referred to as icy even though it is a hot, dense fluid. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean. The mantle may consist of a layer of ionic water in which the water molecules break down into a soup of hydrogen and oxygen ions, and deeper down superionic water in which the oxygen crystallises but the hydrogen ions float around freely within the oxygen lattice.

At a depth of 7,000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones. Very-high-pressure experiments at the Lawrence Livermore National Laboratory suggest that the base of the mantle may be an ocean of liquid carbon with floating solid 'diamonds'. Neptune's internal structure resembles that of Uranus. Its atmosphere forms about 5% to 10% of its mass and extends perhaps 10% to 20% of the way towards the core, where it reaches pressures of about 10 GPa, or about 100,000 times that of Earth's atmosphere. Increasing concentrations of methane, ammonia and water are found in the lower regions of the atmosphere. Neptune's weather is characterised by extremely dynamic storm systems, with winds reaching speeds of almost 600 m/s (2,200 km/h; 1,300 mph)—nearly reaching supersonic flow. More typically, by tracking the motion of persistent clouds, wind speeds have been shown to vary from 20 m/s in the easterly direction to 325 m/s westward. At the cloud tops, the prevailing winds range in speed from 400 m/s along the equator to 250 m/s at the poles.

Most of the winds on Neptune move in a direction opposite the planet's rotation. The general pattern of winds showed prograde rotation at high latitudes vs. retrograde rotation at lower latitudes. The difference in flow direction is thought to be a "skin effect" and not due to any deeper atmospheric processes. At 70° S latitude, a high-speed jet travels at a speed of 300 m/s. The relative "hot spot" is due to Neptune's axial tilt, which has exposed the south pole to the Sun for the last quarter of Neptune's year, or roughly 40 Earth years. As Neptune slowly moves towards the opposite side of the Sun, the south pole will be darkened and the north pole illuminated, causing the methane release to shift to the north pole. Neptune has a planetary ring system, though one much less substantial than that of Saturn. The rings may consist of ice particles coated with silicates or carbon-based material, which most likely gives them a reddish hue. The three main rings are the narrow Adams Ring, 63,000 km from the centre of Neptune, the Le Verrier Ring, at 53,000 km, and the broader, fainter Galle Ring, at 42,000 km. A faint outward extension to the Le Verrier Ring has been named Lassell; it is bounded at its outer edge by the Arago Ring at 57,000 km.

Get a custom paper now from our expert writers.

The existence of arcs was difficult to explain because the laws of motion would predict that arcs would spread out into a uniform ring over short timescales. Astronomers now estimate that the arcs are corralled into their current form by the gravitational effects of Galatea, a moon just inward from the ring. The first of these planetary rings was detected in 1968 by a team led by Edward Guinan. In the early 1980s, analysis of this data along with newer observations led to the hypothesis that this ring might be incomplete. Evidence that the rings might have gaps first arose during a stellar occultation in 1984 when the rings obscured a star on immersion but not on emersion. Images from Voyager 2 in 1989 settled the issue by showing several faint rings.

Image of Alex Wood
This essay was reviewed by
Alex Wood

Cite this Essay

Overview of Neptune and Its Atmosphere. (2019, January 28). GradesFixer. Retrieved December 8, 2024, from https://gradesfixer.com/free-essay-examples/neptune-the-wonderful-planet-in-our-solar-system-of-the-milky-way/
“Overview of Neptune and Its Atmosphere.” GradesFixer, 28 Jan. 2019, gradesfixer.com/free-essay-examples/neptune-the-wonderful-planet-in-our-solar-system-of-the-milky-way/
Overview of Neptune and Its Atmosphere. [online]. Available at: <https://gradesfixer.com/free-essay-examples/neptune-the-wonderful-planet-in-our-solar-system-of-the-milky-way/> [Accessed 8 Dec. 2024].
Overview of Neptune and Its Atmosphere [Internet]. GradesFixer. 2019 Jan 28 [cited 2024 Dec 8]. Available from: https://gradesfixer.com/free-essay-examples/neptune-the-wonderful-planet-in-our-solar-system-of-the-milky-way/
copy
Keep in mind: This sample was shared by another student.
  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours
Write my essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

close

Where do you want us to send this sample?

    By clicking “Continue”, you agree to our terms of service and privacy policy.

    close

    Be careful. This essay is not unique

    This essay was donated by a student and is likely to have been used and submitted before

    Download this Sample

    Free samples may contain mistakes and not unique parts

    close

    Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

    close

    Thanks!

    Please check your inbox.

    We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

    clock-banner-side

    Get Your
    Personalized Essay in 3 Hours or Less!

    exit-popup-close
    We can help you get a better grade and deliver your task on time!
    • Instructions Followed To The Letter
    • Deadlines Met At Every Stage
    • Unique And Plagiarism Free
    Order your paper now