By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related email
No need to pay just yet!
About this sample
About this sample
Words: 714 |
Pages: 2|
4 min read
Published: Feb 12, 2019
Words: 714|Pages: 2|4 min read
Published: Feb 12, 2019
Dielectric polarization occurs when a dipole moment is formed in an insulating material because of an externally applied electric field. When a current interacts with a dielectric (insulating) material, the dielectric material will respond with a shift in charge distribution with the positive charges aligning with the electric field and the negative charges aligning against it. By taking advantage of this response, important circuit elements such as capacitors can be made. Dielectric polarization is the term given to describe the behavior of a material when an external electric field is applied on it. A simple picture can be made using a capacitor as an example. The figure below shows an example of a dielectric material in between two conducting parallel plates. The charges in the material will have a response to the electric field caused by the plates. Ionic PolarizationIonic polarization is a mechanism that contributes to the relative permittivity of a material. This type of polarization typically occurs in ionic crystal elements such as NaCl, KCl, and LiBr.
There is no net polarization inside these materials in the absence of an external electric field because the dipole moments of the negative ions are canceled out with the positive ions. However, when an external field is applied, the ions become displaced, which leads to an induced polarization. Figure shows; The effect of an external electric field on an ionic material. The positive charges will flow with the field and the negative charges will flow against the field, causing a net average dipole moment per ion to form. Orientational Polarization Orientational polarization arises when there is a permanent dipole moment in the material. Materials such as HCl and H2O will have a net permanent dipole moment because the charge distributions of these molecules are skewed. For example, in a HCl molecule, the chlorine atom will be negatively charged and the hydrogen atoms will be positively charged causing the molecule to be dipolar. The dipolar nature of the molecule should cause a dipole moment in the material, however, in the absence of an electric field, the dipole moment is canceled out by thermal agitation resulting in a net zero dipole moment per molecule. When an electric field is applied however, the molecule will begin to rotate to align the molecule with the field, causing a net average dipole moment per molecule as shown in figure.
Interfacial Polarization Interfacial or space charge polarization occurs when there is an accumulation of charge at an interface between two materials or between two regions within a material because of an external field. This can occur when there is a compound dielectric, or when there are two electrodes connected to a dielectric material. This type of electric polarization is different from orientational and ionic polarization because instead of affecting bound positive and negative charges i.e. ionic and covalent bonded structures, interfacial polarization also affects free charges as well. As a result interfacial polarization is usually observed in amorphous or polycrystalline solids.
Figure shows an example of how free charges can accumulate in a field, causing interfacial polarization. The electric field will cause a charge imbalance because of the dielectric material's insulating properties. However, the mobile charges in the dielectric will migrate over maintain charge neutrality. This then causes interfacial polarization. (extra ha ya manufacturing ki heading my adjust hoskta ha) In practice, most dielectric materials are solid. Examples include porcelain (ceramic), mica, glass, plastics, and the oxides of various metals. Some liquids and gases can serve as good dielectric materials. Dry air is an excellent dielectric, and is used in variable capacitors and some types of transmission lines. Distilled water is a fair dielectric. A vacuum is an exceptionally efficient dielectric.
An important property of a dielectric is its ability to support an electrostatic field while dissipating minimal energy in the form of heat. The lower the dielectric loss (the proportion of energy lost as heat), the more effective is a dielectric material. Another consideration is the dielectric constant, the extent to which a substance concentrates the electrostatic lines of flux. Substances with a low dielectric constant include a perfect vacuum, dry air, and most pure, dry gases such as helium and nitrogen. Materials with moderate dielectric constants include ceramics, distilled water, paper, mica, polyethylene, and glass. Metal oxides, in general, have high dielectric constants.
Browse our vast selection of original essay samples, each expertly formatted and styled